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In this paper, we study the convergence and time evolution of the error between the dis-
continuous Galerkin (DG) finite element solution and the exact solution for conservation
laws when upwind fluxes are used. We prove that if we apply piecewise linear polynomials
to a linear scalar equation, the DG solution will be superconvergent towards a particular
projection of the exact solution. Thus, the error of the DG scheme will not grow for fine
grids over a long time period. We give numerical examples of Pk polynomials, with
1 6 k 6 3, to demonstrate the superconvergence property, as well as the long time behavior
of the error. Nonlinear equations, one-dimensional systems and two-dimensional equa-
tions are numerically investigated to demonstrate that the conclusions hold true for very
general cases.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we consider smooth solutions of the following hyperbolic conservation laws
ut þ f ðuÞx ¼ bðx; tÞ; ð1:1Þ

and
ut þ f ðuÞx þ gðuÞy ¼ bðx; y; tÞ; ð1:2Þ
where u, f(u) and g(u) can be either scalars or vectors. We study the convergence and time evolution of the error between the
discontinuous Galerkin (DG) finite element solution and the exact solution, as well as the error between the DG solution and
a particular type of projection of the exact solution. In this paper, we only consider the case when the upwind fluxes (for the
nonlinear case, these include, for example, the Godunov flux or the Engquist-Osher flux) are used.

The type of DG method that we will discuss here is a class of finite element methods devised to solve hyperbolic conser-
vation laws containing only first order spatial derivatives, e.g. [6,5,4,3,7]. Using completely discontinuous polynomial space
for both the test and trial functions in the spatial variables and coupled with explicit and nonlinearly stable high order
Runge–Kutta time discretization, the method has the advantage of flexibility for arbitrarily unstructured meshes, with a
compact stencil, and with the ability to easily accommodate arbitrary h–p adaptivity. See, for example [8–10] for recent
development and application of the DG methods.

The numerical error of the DG solution to (1.1) and (1.2) has been observed to stay level or grow very slowly with re-
spect to the time t for Pk polynomials with k P 1. In [12], Zhang and Shu explicitly give the formulation of the DG solution
. All rights reserved.
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in the case of P1 (piecewise linear) for the linear convection equation. The leading error term is shown to be of a constant
magnitude independent of the time t. This motivates us to divide the numerical error into two parts, one part being the
leading term that does not grow with time, the other part being a superconvergent term that grows at most linearly with
time.

In [1,2], Adjerid et al. proved the superconvergence of the DG solutions at Radau points for ordinary differential equations.
They have also made numerical experiments for the partial differential equations (PDE), although they have not provided a
proof for such cases and have not considered the issue of time growth of the errors. In this paper, we give a proof for a similar
superconvergence in the case of piecewise linear polynomials for linear PDEs and consider its impact on the time growth of
the errors. We also demonstrate numerically that the conclusions hold true for very general cases, including higher order DG,
nonlinear equations, systems, and two dimensions. The wind direction f0(u) is no longer assumed to be positive, and it can
vary in sign in the computational domain. In this case, upwind fluxes need to be used to achieve superconvergence, and the
projection of the exact solution will depend on the sign of f0(u) and is not uniform in all cells.

We remark that we are concerned with the error evolution of the semi-discrete DG solution which is not discretized in
time in the proof, and is discretized in time with a higher order time integrator in the numerical experiments so that the
spatial error dominates. In a practical setting, the time discretization error should also be considered, although we do not
address this issue in this paper.

This paper is organized as follows: in Section 2, we consider linear constant coefficient scalar equations. We prove that for
P1 the error between the DG solution and a particular projection of the exact solution is superconvergent and thus the error
between the DG solution and the exact solution will not grow for fine grids over a long time period. Specifically, the proof
indicates that for a grid with mesh size h, the error will not grow until the time reaches Oð 1ffiffi

h
p Þ. Numerical experiments indi-

cate even better performance, that the error does not grow until the time reaches Oð1hÞ. We give numerical examples for the
case of Pk with 0 6 k 6 3 and show that for k P 1, this superconvergence property always holds true. In Section 3, we gen-
eralize the discussion into linear equations with variable coefficients. Numerical results for nonlinear equations, one-dimen-
sional systems and two-dimensional equations are given in Sections 4–6, respectively. Finally, concluding remarks and
remarks on future work are provided in Section 7.
2. Linear equations with constant coefficients

In this section, we consider the following equation
ut þ ux ¼ 0
uðx;0Þ ¼ u0ðxÞ
uð0; tÞ ¼ uð2p; tÞ

8><>: : ð2:1Þ
Here, u0(x) is a smooth 2p-periodic function.
The usual notation of the DG method is adopted. If we want to solve this equation on the interval I = [a,b], first we divide it

into N cells as follows
a ¼ x1
2
< x3

2
< � � � < xNþ1

2
¼ b ð2:2Þ
We denote
Ij ¼ ðxj�1
2
; xjþ1

2
Þ; xj ¼

1
2

xj�1
2
þ xjþ1

2

� �
; ð2:3Þ
as the cells and cell centers respectively, and Vk
h ¼ ft : tjIj

2 PkðIjÞ; j ¼ 1; . . . ;Ng to be the approximation space, where Pk(Ij)
denotes all polynomials of degree at most k on Ij. The DG scheme using the upwind flux will become: find uh 2 Vk

h, such that
Z
Ij

ðuhÞtvhdx�
Z

Ij

uhðvhÞxdxþ u�h v�h jjþ1
2
� u�h vþh jj�1

2
¼ 0 ð2:4Þ
holds for any vh 2 Vk
h. Here and below ðvhÞ�jþ1

2
¼ vhðx�jþ1

2
Þ denotes the left limit of the function vh at the discontinuity point xjþ1

2
.

Likewise for vþh .
In addition, we define P�h u to be a projection of u into Vk

h, such that
Z
Ij

P�h u vhdx ¼
Z

Ij

uvhdx ð2:5Þ
for any vh 2 Pk�1 on Ij, where k is the polynomial degree of the DG solution, and
ðP�h uÞ� ¼ u� at xjþ1=2: ð2:6Þ
Notice that this special projection is used in the error estimates of the DG methods to derive optimal L2 error bounds in the
literature, e.g. in [13]. We are going to show that indeed the numerical solution is closer to this special projection of the exact
solution than to the exact solution itself. Let us denote e = u � uh to be the error between the exact solution and numerical
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solution, e ¼ u� P�h u to be the projection error, and �e ¼ P�h u� uh to be the error between the numerical solution and the pro-
jection of the exact solution.

2.1. The case of P1

In this subsection, we consider the piecewise linear case of k = 1. We prove that for this particular case, the error between
the numerical solution and the particular projection of the exact solution �e will achieve at least ðkþ 3

2Þth order of
superconvergence.

Theorem 2.1. Let u be the exact solution of the Eq. (2.1), and uh be the DG solution of (2.4) with the initial condition
uhð�;0Þ ¼ P�h u0. Here, h denotes the mesh size. In the case of k = 1 and uniform meshes, we have the following error estimate:
jj�eð�; tÞjjL2 6 C1ðt þ 1Þh5=2
; ð2:7Þ
and
jjeð�; tÞjjL2 6 C1th5=2 þ C2h2
; ð2:8Þ
where C1 and C2 are constants which do not depend on t or h.

Proof. Since u satisfies (2.1), we can easily check that
Z
Ij

utvhdx�
Z

Ij

uðvhÞxdxþ u�v�h jjþ1
2
� u�vþh jj�1

2
¼ 0 ð2:9Þ
holds for any vh 2 V1
h. Combined with (2.4), we have the error equation
Z

Ij

etvhdx�
Z

Ij

eðvhÞxdxþ e�v�h jjþ1
2
� e�vþh jj�1

2
¼ 0 ð2:10Þ
which holds true for any vh 2 V1
h. Taking vh ¼ �e, we obtain
Z

I
ð�eÞt�edxþ

Z
I

et�edx�
Z

Ij

e�exdx�
Z

Ij

�e�exdxþ e��e�jjþ1
2
� e��eþjj�1

2
¼ 0: ð2:11Þ
By the property (2.5) of the projection P�h , we have
Z
Ij

e�exdx ¼ 0
since �ex is a polynomial of degree at most k � 1 in Ij. By the property (2.6) of the projection P�h , we have
e�jþ1
2
¼ e�jþ1

2
þ �e�jþ1

2
¼ �e�jþ1

2

for all j. (2.11) now becomes
Z
I
ð�eÞt�edxþ

Z
I

et�edx�
Z

Ij

�e�exdxþ �e��e�jjþ1
2
� �e��eþjj�1

2
¼ 0
or
 Z
I
ð�eÞt�edxþ

Z
I

et�edxþ bF jþ1
2
� bF j�1

2
þ 1

2
½�e�2jþ1

2
¼ 0 ð2:12Þ
where [v] = v+ � v� denotes the jump of v, with
bF jþ1
2
¼ �1

2
ð�eþ

jþ1
2
Þ2 þ �e�jþ1

2
�eþ

jþ1
2
:

Summing the equality (2.12) over j and noticing the periodic boundary condition, we obtain
Z
I
ð�eÞt�edxþ 1

2

X
j

½�e�2jþ1
2
þ
Z

I
et�edx ¼ 0:
Thus,
d
dt
jj�ejj2L2 6 2

Z
I

et�edx
���� ����: ð2:13Þ
To simplify the discussion, we first take a single Fourier mode and assume u0(x) = sin(x). In this case, we know the exact solu-
tion of (2.1) is
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uðx; tÞ ¼ sinðx� tÞ:
Hence, we can compute the projection of u to be
P�h u ¼ cj þ dj
x� xj

h

on Ij, where cj ¼ 1
h ð� cosðxjþ1

2
� tÞ þ cosðxj�1

2
� tÞÞ, and dj ¼ 2ðsinðxjþ1

2
� tÞ � cjÞ. On the other hand, the numerical solution uh

can be expressed in the following form
uhjIj
¼ uj�1

4
/j�1

4
ðxÞ þ ujþ1

4
/jþ1

4
;

where /j�1
4
ðxÞ ¼ 2

h ðxjþ1
4
� xÞ and /jþ1

4
ðxÞ ¼ 2

h ðx� xj�1
4
Þ are the basis functions. The value of uj�1

4
can be obtained using the tech-

niques in [12]
uj�1
4
¼ sinðxj � tÞ � h

4
cosðxj � tÞ þ h2

96
sinðxj � tÞ þ h3 cosðxj � tÞ

1152
� t

72
sinðxj � tÞ

� �
þ Oðh4Þ;
and
ujþ1
4
¼ sinðxj � tÞ þ h

4
cosðxj � tÞ � 7h2

96
sinðxj � tÞ þ h3 �11 cosðxj � tÞ

384
� t

72
sinðxj � tÞ

� �
þ Oðh4Þ:
After Taylor expansion, we have
�e ¼ � h2

96
sinðxj � tÞ þ 1

72
ðcosðxj � tÞ þ t sinðxj � tÞÞ þ 5

298
cosðxj � tÞ þ 1

18
t sinðxj � tÞ

� �
x� xj

h

� �
h3 þ Oðh4Þ on Ij:
By similar arguments, we can prove that if u0(x) = sin(kx), then
�e ¼ � h2

96
k2 sinðkðxj � tÞÞ

þ 1
72
ðcosðkðxj � tÞÞ þ t sinðkðxj � tÞÞÞ þ 5

298
cosðkðxj � tÞÞ þ 1

18
t sinðkðxj � tÞÞ

� �
x� xj

h

� �
k3h3 þ Oðk4h4Þ on Ij:
and if u0(x) = cos(kx), then
�e ¼ � h2

96
k2 cosðkðxj � tÞÞ

þ 1
72
ð� sinðkðxj � tÞÞ þ t cosðkðxj � tÞÞÞ þ � 5

298
sinðkðxj � tÞÞ þ 1

18
t cosðkðxj � tÞÞ

� �
x� xj

h

� �
k3h3

þ Oðk4h4Þ on Ij:
For any smooth initial condition u0(x), the Fourier series of u0 is u0ðxÞ ¼
P1

k¼0½ak sinðkxÞ þ bk cosðkxÞ� where
ak ¼ 1

p

R 2p
0 u0ðxÞ sinðkxÞdx, bk ¼ 1

p

R 2p
0 u0ðxÞ cosðkxÞdx. Then the exact solution to (2.1) is
uðx; tÞ ¼ u0ðx� tÞ ¼
X1
k¼0

½ak sinðkðx� tÞÞ þ bk cosðkðx� tÞÞ�: ð2:14Þ
It is well known that
ak; bk ¼ O
1
kp

� �
ð2:15Þ
if u0 2 Cp. Since P�h is a linear operator,
P�h uðx; tÞ ¼
X1
k¼0

½akP�h sinðkðx� tÞÞ þ bkP�h cosðkðx� tÞÞ�: ð2:16Þ
We can also prove that
uhðx; tÞ ¼
X1
k¼0

½akuk
hðx; tÞ þ bkwk

hðx; tÞ�; ð2:17Þ
where uk
hðx; tÞ is the DG solution to
ut þ ux ¼ 0
uðx;0Þ ¼ sinðkxÞ
uð0; tÞ ¼ uð2p; tÞ

;

8><>:
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and wk
hðx; tÞ is the DG solution to
ut þ ux ¼ 0
uðx;0Þ ¼ cosðkxÞ
uð0; tÞ ¼ uð2p; tÞ

:

8><>:

To prove this, we only need the following equations
Z

Ij

X1
k¼0

akðuk
hÞtvhdx ¼

X1
k¼0

ak

Z
Ij

ðuk
hÞtvhdxZ

Ij

X1
k¼0

akuk
hðvhÞxdx ¼

X1
k¼0

ak

Z
Ij

uk
hðvhÞxdx
to hold for any vh 2 V1
h . They can be easily proved using the dominated convergence theorem.

From (2.14), (2.15) with p P 6, (2.16) and (2.17), we have
�e ¼ � h2

96

X1
k¼0

½akk2 sinðkðxj � tÞÞ þ bkk2 cosðkðxj � tÞÞ� þ
X1
k¼0

ak
1

72
cosðkðxj � tÞÞ � bk

1
72

sinðkðxj � tÞÞ
� 	

k3h3

þ
X1
k¼0

ak
t

72
sinðkðxj � tÞÞ þ bk

t
72

cosðkðxj � tÞÞ
� 	

k3h3

þ
X1
k¼0

ak
5

298
cosðkðxj � tÞÞ � bk

5
298

sinðkðxj � tÞÞ
� 	

x� xj

h
k3h3

þ
X1
k¼0

ak
t

18
sinðkðxj � tÞÞ þ bk

t
18

cosðkðxj � tÞÞ
� 	

x� xj

h
k3h3 þ Oðh4Þ ð2:18Þ
By the properties of the projection P�h , we know that on Ij
Z
Ij

etdx ¼ 0
and et 6 C1h2 where the constant C1 does not depend on t. Moreover, by (2.15) with p P 5, there exists C2, such that
X1
k¼0

ak
5

298
cosðkðxj � tÞÞ � bk

5
298

sinðkðxj � tÞÞ
� 	

k3

�����
����� 6 C2
and
 X1
k¼0

ak
1

18
sinðkðxj � tÞÞ þ bk

1
18

cosðkðxj � tÞÞÞ
� 	

k3

�����
����� 6 C2
for all j. Thus, by (2.18), we have
Z
Ij

et�edx

�����
����� 6 C1C2ð1þ tÞh6
with the constants C1, C2 independent of t. Summing over j and using (2.13), we obtain
d
dt
jj�ejj2L2 6 Ch5ð1þ tÞ
where the constant C is independent of t. Thus,
jj�eð�; tÞjjL2 6 Ch5=2ð1þ tÞ
since the initial condition is chosen as uhð�;0Þ ¼ P�h u0. We have therefore proved (2.7), thus (2.8) follows. h

From (2.8), if t 6 Cffiffi
h
p , we will have the following bound for the L2 error,
jjeðx; tÞjjL2 6 ðC1C þ C2Þh2 ¼ Dh2
;

where D is a constant that does not depend on t or h. This is what we mean by saying that the error of the DG scheme will not
grow for fine grids (small h) over a long time period (proportional to 1ffiffi

h
p ).

Even though our proof is provided for the simple scalar equation (2.1), the same proof applies also to any linear hyperbolic
system
ut þ Aux ¼ 0
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where A is a constant matrix which is diagonalizable with real eigenvalues. This is because the PDE as well as the DG scheme
can be diagonalized into decoupled scalar equations.

Next, we use some numerical examples to demonstrate the superconvergence of �e and the long time behavior of e.

Example 1. We solve the one-dimensional equation
Table 2
The err

�e

e

Table 2
The erro
mesh o

�e

e

ut þ ux ¼ 0
uðx;0Þ ¼ sinðxÞ
uð0; tÞ ¼ uð2p; tÞ

8><>: : ð2:19Þ
The exact solution to this problem is
uðx; tÞ ¼ sinðx� tÞ: ð2:20Þ
In the computation, we use the L2 projection of the initial condition as our numerical initial condition (even though The-
orem 2.1 requires the initial condition to be uhð�;0Þ ¼ P�h u0, we have observed little difference if we use the usual L2 projec-
tion of the initial condition instead). The strong stability preserving (SSP) ninth-order time discretization from [11] is
adopted as the time discretization to make the time error negligible compared to the space errors. Uniform meshes are used
in the calculation.

Table 2.1 lists the numerical errors, �e and e, and their orders for different final time T. We conclude that at any time, we
can always observe third order accuracy for �e, indicating that the error bound for �e obtained in (2.7) is not optimal. For
longer time, for example from T = 10 to T ¼ 100; �e grows linearly with respect to the time t. Meanwhile, the error e is of
second order, and this error does not grow much with respect to the time t for fine grids. This is a natural conclusion of
the theorem, since the threshold time for the growth of e is proportional to 1ffiffi

h
p . In this example, the numerical results indi-

cate that it is actually proportional to 1
h. For bigger N, namely, smaller h, this time is longer than what we have observed in

the table.
If instead of the periodic boundary condition, we impose u(0,t) = sin(�t) and solve the initial-boundary value problem, we

observe similar results as shown in Table 2.2. It seems to indicate that, although the proof relies on Fourier analysis and
hence is restricted to periodic cases, the results are in fact more general for a broader class of initial-boundary value prob-
lems. We have also tested initial-boundary value problems for the remaining examples below and have obtained essentially
the same results as for the periodic cases, however we will not list them to save space.

We have also used a non-uniform mesh which is a 10% random perturbation of the uniform mesh. Table 2.3 lists the order
and time evolution of �e and e in this case. We can see that all the conclusions for uniform meshes also hold true for this non-
.1
ors �e and e for Example 1 when using P1 polynomials and SSP ninth-order time discretization on a uniform mesh of N cells (CFL = 0.5)

N T = 1 T = 10 T = 100

L2 error Order L2 error Order L2 error Order

20 4.60E�04 – 3.04E�03 – 2.96E�02 –
40 5.80E�05 2.99 3.82E�04 2.99 3.79E�03 2.97
80 7.26E�06 3.00 4.79E�05 3.00 4.75E�04 2.99

160 9.08E�07 3.00 5.99E�06 3.00 5.95E�05 3.00

20 4.21E�03 – 5.16E�03 – 2.99E�02 –
40 1.06E�03 1.99 1.12E�03 2.20 3.93E�-03 2.92
80 2.65E�04 2.00 2.69E�04 2.06 5.44E�04 2.85

160 6.64E�05 2.00 6.66E�05 2.02 8.91E�05 2.61

.2
rs �e and e for Example 1 solved as an initial-boundary value problem when using P1 polynomials and SSP ninth-order time discretization on a uniform

f N cells (CFL = 0.5)

N T = 1 T = 10 T = 100

L2 error Order L2 error Order L2 error Order

20 4.74E�04 – 1.28E�03 – 1.06E�03 –
40 6.02E�05 2.98 1.60E�04 3.00 1.33E�04 3.00
80 7.57E�06 2.99 2.00E�05 3.00 1.65E�05 3.01

160 9.50E�07 3.00 2.50E�06 3.00 2.16E�06 2.93

20 4.22E�03 – 4.43E�03 – 4.37E�03 –
40 1.06E�03 1.99 1.07E�03 2.04 1.07E�03 2.03
80 2.65E�04 2.00 2.66E�04 2.01 2.66E�04 2.01

160 6.64E�05 2.00 6.64E�05 2.00 6.64E�05 2.00



Table 2.3
The errors �e and e for Example 1 when using P1 polynomials and SSP ninth-order time discretization on a random mesh of N cells (CFL = 0.5)

N T = 1 T = 10 T = 100

L2 error Order L2 error Order L2 error Order

�e 20 5.09E�04 – 3.18E�03 – 3.09E�02 –
40 7.35E�05 2.79 4.01E�04 2.99 3.98E�03 2.96
80 9.05E�06 3.02 4.91E�05 3.03 4.88E�04 3.03

160 1.45E�06 2.64 6.24E�06 2.98 6.19E�05 2.98
320 2.04E�07 2.83 7.81E�07 3.00 7.74E�06 3.00

e 20 4.40E�03 – 5.36E�03 – 3.12E�02 –
40 1.09E�03 2.01 1.16E�03 2.21 4.13E�03 2.92
80 2.71E�04 2.01 2.76E�04 2.07 5.58E�04 2.89

160 6.86E�05 1.98 6.88E�05 2.00 9.23E�05 2.60
320 1.72E�05 2.00 1.72E�05 2.00 1.88E�05 2.30
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uniform mesh. Notice that for a 10% random perturbation of the uniform mesh, the ratio of mesh sizes between adjacent cells
can be as large as 3

2. We have also tested this example using a more severely non-uniform mesh which is a 30% random per-
turbation of the uniform mesh. The numerical results (which are not included to save space) still show superconvergence,
although the errors for �e do not achieve third order (the order is around 2.5). Notice that for a 30% random perturbation
of the uniform mesh, the ratio of mesh sizes between adjacent cells can be as large as 4.

Example 2. We still solve the same equation as in the previous example but with a different initial condition.
Table 2
The err

�e

e

ut þ ux ¼ 0
uðx;0Þ ¼ esinðxÞ

uð0; tÞ ¼ uð2p; tÞ

8><>: ð2:21Þ
The exact solution is
uðx; tÞ ¼ esinðx�tÞ: ð2:22Þ
Notice that the initial condition contains all the Fourier modes, not just a single mode as in Example 1.

Table 2.4 is obtained by a non-uniform mesh which is a 10% random perturbation of the uniform mesh. All conclusions for
Example 1 seem to hold true for this example as well.

2.2. The case of P2

While the technique of the proof for Theorem 2.1 in the previous section can be used in principle also for Pk cases with
k > 1, the algebraic manipulations become prohibitively complicated. We have therefore only used numerical experiments to
demonstrate the generality of the conclusion for the remaining cases.

In this subsection, we provide numerical tests of Examples 1 and 2 when piecewise P2 polynomials are used.

Example 1a. Table 2.5 lists the numerical errors, �e and e, obtained on a uniform mesh. When T ¼ 1; �e is of fourth order.
When T = 100 and T = 1000, if we keep on refining the grids, the order seems also to converge to four. From T = 100 to
T = 1000, the error �e grows linearly with respect to time. In this example, e is of third order and does not grow with respect to
time (until the final time T = 1000 that we have run) for the fine grids.
.4
ors �e and e for Example 2 when using P1 polynomials and SSP ninth-order time discretization on a random mesh of N cells (CFL = 0.5)

N T = 1 T = 10 T = 100

L2 error Order L2 error Order L2 error Order

20 2.05E�03 – 1.66E�02 – 1.08E�01 –
40 2.80E�04 2.87 2.32E�03 2.84 2.07E�02 2.38
80 3.43E�05 3.03 2.89E�04 3.01 2.83E�03 2.87

160 4.53E�06 2.92 3.67E�05 2.98 3.66E�04 2.95
320 5.79E�07 2.97 4.59E�06 3.00 4.58E�05 3.00

20 6.79E�03 – 1.78E�02 – 1.08E�01 –
40 1.79E�03 1.92 2.88E�03 2.63 2.08E�02 2.37
80 4.31E�04 2.05 5.28E�04 2.45 2.87E�03 2.86

160 1.11E�04 1.95 1.17E�04 2.18 3.82E�04 2.91
320 2.77E�05 2.01 2.83E�05 2.04 5.35E�05 2.84



Table 2.5
The errors �e and e for Example 1a when using P2 polynomials and SSP ninth-order time discretization on a uniform mesh of N cells (CFL = 0.1)

N T = 1 T = 100 T = 1000

L2 error Order L2 error Order L2 error Order

�e 20 4.17E�06 – 3.02E�05 – 2.99E�04 –
40 2.62E�07 3.99 9.74E�07 4.95 9.38E�06 4.99
80 1.64E�08 4.00 3.36E�08 4.86 2.94E�07 5.00

160 1.02E�09 4.00 1.37E�09 4.61 9.91E�09 4.89

e 20 1.07E�04 – 1.11E�04 – 3.18E�04 –
40 1.34E�05 3.00 1.34E�05 3.05 1.63E�05 4.28
80 1.67E�06 3.00 1.67E�06 3.00 1.70E�06 3.28

160 2.09E�07 3.00 2.09E�07 3.00 2.09E�07 3.02
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Example 2a. Table 2.6 lists the numerical errors and orders for �e and e for the test case in Example 2. When T = 1, we observe
fourth order accuracy for �e. When T = 100 and T ¼ 1000; �e seems to have fifth order accuracy. In this example, e is of third
order until T = 100 but is still fourth order at T = 1000, and it does not grow with respect to time until T = 100 but grows
between T = 100 and T = 1000, for the grids that we have run.
2.3. The case of P3

In this subsection, we provide numerical tests of Examples 1 and 2 when piecewise P3 polynomials are used.

Example 1b. We use piecewise P3 polynomials and the SSP ninth order time discretization on a uniform mesh for the test
problem in Example 1. Table 2.7 gives the numerical orders and time evolution for �e and e. �e achieves (k + 2)th order
superconvergence and grows linearly from T = 100 to T = 500. e achieves (k + 1)th order convergence and does not grow with
respect to the time t until the time that we have computed, for fine grids.

Example 2b. We use piecewise P3 polynomials and SSP ninth order time discretization on a uniform mesh for the test case in
Example 2. The results are listed in Table 2.8. The conclusion is similar to that in Example 1b, however, we seem to get higher
order accuracy here than in Example 1b for the grid sizes and times that we have used.
Table 2.6
The errors �e and e for Example 2a when using P2 polynomials and SSP ninth-order time discretization on a uniform mesh of N cells (CFL = 0.1)

N T = 1 T = 100 T = 1000

L2 error Order L2 error Order L2 error Order

�e 20 2.64E�05 – 1.22E�03 – 1.01E�02 –
40 1.59E�06 4.05 4.07E�05 4.90 4.02E�04 4.64
80 9.77E�08 4.03 1.29E�06 4.98 1.28E�05 4.97

160 6.08E�09 4.01 4.07E�08 4.98 4.02E�07 5.00

e 20 2.94E�04 – 1.25E�03 – 1.01E�02 –
40 3.67E�05 3.00 5.48E�05 4.51 4.04E�04 4.64
80 4.59E�06 3.00 4.77E�06 3.52 1.36E�05 4.89

160 5.74E�07 3.00 5.76E�07 3.05 7.01E�07 4.28

Table 2.7
The errors �e and e for Example 1b when using P3 polynomials and SSP ninth-order time discretization on a uniform mesh of N cells (CFL = 0.1)

N T = 10 T = 100 T = 500

L2 error Order L2 error Order L2 error Order

�e 5 7.87E�05 – 2.42E�04 – 1.18E�03 –
10 1.70E�06 5.53 2.58E�06 6.55 9.72E�06 6.92
20 5.40E�08 4.98 5.60E�08 5.53 9.27E�08 6.71
40 1.68E�09 5.00 1.69E�09 5.05 1.79E�09 5.69

e 5 5.21E�04 – 5.74E�04 – 1.29E�03 –
10 3.30E�05 3.98 3.30E�05 4.12 3.43E�05 5.23
20 2.06E�06 4.00 2.06E�06 4.00 2.07E�06 4.05
40 1.29E�07 4.00 1.29E�07 4.00 1.29E�07 4.00



Table 2.8
The errors �e and e for Example 2b when using P3 polynomials and SSP ninth-order time discretization on a uniform mesh of N cells (CFL = 0.1)

N T = 10 T = 100 T = 500

L2 error Order L2 error Order L2 error Order

�e 5 5.40E�03 – 2.86E�02 – 6.70E�02 –
10 8.70E�05 5.96 7.65E�04 5.22 3.24E�03 4.37
20 1.11E�06 6.30 7.50E�06 6.67 3.71E�05 6.45
40 2.61E�08 5.40 6.57E�08 6.84 3.04E�07 6.93

e 5 5.50E�03 – 2.89E�02 – 6.70E�02 –
10 2.09E�04 4.72 7.88E�04 5.19 3.24E�03 4.37
20 1.22E�05 4.09 1.43E�05 5.79 3.91E�05 6.38
40 7.65E�07 4.00 7.67E�07 4.22 8.22E�07 5.57

Table 2.9
The error e for Example 1 when using P0 polynomials and SSP ninth-order time discretization on a uniform mesh of 320 cells (CFL = 0.5)

T L2 error

1 7.99E�03
10 6.62E�02

100 4.42E�01
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2.4. The case of P0

Finally we consider the case of P0. In this case, the projection P�h can no longer be defined. We compute e for Example 1
when N = 320 and list the L2 errors in Table 2.9. Unlike the cases of P1, P2, and P3, this time e grows with respect to time even
for fine grids.

3. Linear equations with variable coefficients

In this section, we generalize the discussion of Section 2 to linear variable coefficient equations.

Example 3. We solve the following equation
Table 3
The err

�e

e

ut þ ðaðxÞuÞx ¼ bðx; tÞ
uðx;0Þ ¼ sinðxÞ
uð0; tÞ ¼ uð2p; tÞ

8><>: ; ð3:1Þ
where a(x) and b(x,t) are given by
aðxÞ ¼ sinðxÞ þ 2;
bðx; tÞ ¼ ðsinðxÞ þ 3Þ cosðxþ tÞ þ cosðxÞ sinðxþ tÞ:
The exact solution to this problem is
uðx; tÞ ¼ sinðxþ tÞ: ð3:2Þ
Since a(x) > 0, we can still use the upwind fluxes. The projection P�h is defined in the same way as before. We use the five
stage, fourth order SSP Runge–Kutta discretization in time and take Dt = CFL h2 to reduce the time errors. We test the exam-
ple with both P1 and P2 polynomials. The results in Tables 3.1 and 3.2 show that �e achieves (k + 2)th order superconvergence,
.1
ors �e and e for Example 3 when using P1 polynomials on a uniform mesh of N cells (CFL = 0.5)

N T = 1 T = 100 T = 500

L2 error Order L2 error Order L2 error Order

20 2.55E�04 – 1.35E�04 – 1.64E�04 –
40 3.24E�05 2.98 2.31E�05 2.54 1.94E�05 3.08
80 4.06E�06 3.00 3.79E�06 2.61 3.08E�06 2.65

160 5.09E�07 3.00 5.05E�07 2.91 4.31E�07 2.85

20 4.25E�03 – 4.26E�03 – 4.24E�03 –
40 1.06E�03 2.00 1.06E�03 2.00 1.06E�03 2.00
80 2.65E�04 2.00 2.66E�04 2.00 2.65E�04 2.00

160 6.64E�05 2.00 6.64E�05 2.00 6.64E�05 2.00



Table 3.2
The errors �e and e for Example 3 when using P2 polynomials on a uniform mesh of N cells (CFL = 0.5)

N T = 1 T = 100 T = 500

L2 error Order L2 error Order L2 error Order

�e 20 4.29E�06 – 4.19E�06 – 4.20E�06 –
40 2.64E�07 4.02 2.61E�07 4.00 2.62E�07 4.00
80 1.65E�08 4.00 1.63E�08 4.00 1.63E�08 4.00

160 1.03E�09 4.00 1.02E�09 4.00 1.02E�09 4.00

e 20 1.07E�04 – 1.07E�04 – 1.07E�04 –
40 1.34E�05 3.00 1.34E�05 3.00 1.34E�05 3.00
80 1.67E�06 3.00 1.67E�06 3.00 1.67E�06 3.00

160 2.09E�07 3.00 2.09E�07 3.00 2.09E�07 3.00
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and it does not grow with respect to time for the meshes and times that we have used. The error e achieves the expected
(k + 1)th order accuracy and it does not grow with respect to time either. That is, the results seem to be even better in this
variable coefficient case than the constant coefficient case studied in the previous section.

Example 4. We solve the Eq. (3.1) where a(x) and b(x,t) are given by
Table 3
The err

�e

e

Table 3
The err

�e

e

aðxÞ ¼ sinðxÞ;
bðx; tÞ ¼ ðsinðxÞ þ 1Þ cosðxþ tÞ þ cosðxÞ sinðxþ tÞ:
The exact solution to this problem is
uðx; tÞ ¼ sinðxþ tÞ: ð3:3Þ
In this example, a(x) is no longer always positive. However, we can still use the upwind flux, namely, if aðxjþ1
2
Þ > 0, then at

xjþ1
2
, we take the flux to be u�h ; otherwise, we use uþh .

The projection Ph is defined as follows. If a(xj) > 0, then on the cell Ij, we use P�h ; otherwise, we use Pþh , which is defined as
the projection of u into Vk

h such that
Z
Ij

Pþh u vhdx ¼
Z

Ij

uvhdx
.3
ors �e and e for Example 4 when using P1 polynomials on a uniform mesh of N cells (CFL = 0.5)

N T = 1 T = 100 T = 500

L2 error Order L2 error Order L2 error Order

20 1.31E�03 – 4.17E�03 – 2.61E�03 –
40 2.21E�04 2.56 8.07E�04 2.37 6.01E�04 2.12
80 3.81E�05 2.54 1.07E�04 2.91 1.11E�04 2.43

160 6.64E�06 2.52 1.16E�05 3.20 1.64E�05 2.76

20 4.25E�03 – 5.66E�03 – 4.86E�03 –
40 1.03E�03 1.98 1.30E�03 2.13 1.24E�03 1.98
80 2.61E�04 1.98 2.85E�04 2.18 2.90E�04 2.09

160 6.56E�05 1.99 6.77E�05 2.07 6.82E�05 2.09

.4
ors �e and e for Example 4 when using P2 polynomials on a uniform mesh of N cells (CFL = 0.5)

N T = 1 T = 100 T = 500

L2 error Order L2 error Order L2 error Order

20 4.38E�05 – 9.73E�05 – 8.53E�05 –
40 3.96E�06 3.47 5.99E�06 4.02 9.30E�06 3.20
80 3.53E�07 3.49 4.11E�07 3.87 5.26E�07 4.14

160 3.13E�08 3.50 3.93E�08 3.38 4.12E�08 4.00

20 1.16E�04 – 1.27E�04 – 1.27E�04 –
40 1.40E�05 3.05 1.41E�05 3.17 1.54E�05 3.05
80 1.72E�06 3.03 1.75E�06 3.01 1.76E�06 3.13

160 2.12E�07 3.02 2.13E�07 3.04 2.16E�07 3.00
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for any vh 2 Pk�1 on Ij and
Table 4
The err

�e

e

Table 4
The err

�e

e

ðPþh uÞþ ¼ uþ at xj�1=2:
We again use the five stage, fourth order SSP Runge–Kutta discretization in time and take Dt = CFL h2 to reduce time er-
rors. �e is now defined to be Phu � uh. We test the example with both P1 and P2 polynomials. The results in Tables 3.3 and 3.4
show that �e achieves at least ðkþ 3

2Þth order superconvergence, and it does not grow with respect to time for the meshes and
times that we have used. The error e achieves the expected (k + 1)th order accuracy and it does not grow with respect to time
either. That is, the results are similar to those from the previous example when the coefficient is positive.
4. Nonlinear equations

In this section, we consider nonlinear equations.

Example 5. We solve the following nonlinear equation
ut þ ðu3Þx ¼ bðx; tÞ
uðx;0Þ ¼ sinðxÞ
uð0; tÞ ¼ uð2p; tÞ

8><>: ; ð4:1Þ
where b(x,t) is given by
bðx; tÞ ¼ ð1þ 3 sin2ðxþ tÞÞ cosðxþ tÞ:
The exact solution is
uðx; tÞ ¼ sinðxþ tÞ: ð4:2Þ
Since f0(u) = 3u2 P 0, we can still use the upwind fluxes. The projection P�h is defined in the same way as before. We use
the five stage, fourth order SSP Runge–Kutta discretization in time and take Dt = CFL h2 to reduce time errors. We test the
example with both P1 and P2 polynomials. The results in Tables 4.1 and 4.2 show that �e achieves at least ðkþ 3

2Þth order
superconvergence, and it does not grow with respect to time for the meshes and times that we have used. The error e
achieves the expected (k + 1)th order accuracy and it does not grow with respect to time either. That is, the results are similar
to those from the previous section with variable coefficient linear equations.
.1
ors �e and e for Example 5 when using P1 polynomials on a uniform mesh of N cells (CFL = 0.5)

N T = 1 T = 100 T = 500

L2 error Order L2 error Order L2 error Order

20 7.30E�04 – 6.97E�04 – 6.95E�04 –
40 1.31E�04 2.48 1.38E�04 2.33 1.30E�04 2.42
80 2.32E�05 2.49 2.45E�05 2.49 2.40E�05 2.43

160 4.18E�06 2.47 4.31E�06 2.51 4.29E�06 2.48

20 4.27E�03 – 4.25E�03 – 4.25E�03 –
40 1.06E�03 2.00 1.06E�03 2.00 1.06E�03 2.00
80 2.66E�04 2.00 2.66E�04 2.00 2.66E�04 2.00

160 6.64E�05 2.00 6.64E�05 2.00 6.64E�05 2.00

.2
ors �e and e for Example 5 when using P2 polynomials on a uniform mesh of N cells (CFL = 0.5)

N T = 1 T = 100 T = 500

L2 error Order L2 error Order L2 error Order

20 5.40E�05 – 3.45E�05 – 3.53E�05 –
40 4.67E�06 3.53 3.02E�06 3.51 3.01E�06 3.55
80 3.22E�07 3.86 2.57E�07 3.56 2.57E�07 3.55

160 1.99E�08 4.02 1.91E�08 3.75 1.91E�08 3.75

20 1.12E�04 – 1.08E�04 – 1.08E�04 –
40 1.34E�05 3.07 1.33E�05 3.03 1.33E�05 3.03
80 1.65E�06 3.02 1.65E�06 3.01 1.65E�06 3.01

160 2.07E�07 3.00 2.07E�07 2.99 2.07E�07 2.99
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Example 6. We solve the following nonlinear Burgers equation
Table 4
The err

�e

e

Table 4
The err

�e

e

Table 4
Exampl

N

20
40
80

160
ut þ ðu2Þx ¼ bðx; tÞ
uðx;0Þ ¼ sinðxÞ
uð0; tÞ ¼ uð2p; tÞ

8><>: ; ð4:3Þ
where b(x,t) is given by
bðx; tÞ ¼ ð1þ 2 sinðxþ tÞÞ cosðxþ tÞ:
The exact solution is
uðx; tÞ ¼ sinðxþ tÞ: ð4:4Þ
In this example, f0(u) is no longer always positive. We choose to use the Godunov flux, which is an upwind flux. The pro-
jection Ph is defined as follows. If u(xj,t) is positive, then on the cell Ij, we use P�h ; otherwise, we use Pþh .

We again use the five stage, fourth order SSP Runge–Kutta discretization in time and take Dt ¼ CFLh2
:�e is now defined to

be Phu � uh. We test this example using both P1 and P2 polynomials. From Tables 4.3 and 4.4, we can see that �e has at least
ðkþ 3

2Þth order superconvergence, and it does not grow with respect to time for most meshes. The error e achieves the ex-
pected (k + 1)th order accuracy and it does not grow with respect to time either. That is, the results are similar to those from
the previous example when the wind direction does not change.

For Example 6, if we use the Lax-Friedrichs flux instead of the Godunov flux, then �e does not achieve superconvergence, as
can be seen from Table 4.5.
.3
ors �e and e for Example 6 when using P1 polynomials on a uniform mesh of N cells (CFL = 0.5)

N T = 1 T = 100 T = 500

L2 error Order L2 error Order L2 error Order

20 7.74E�04 – 1.85E�03 – 1.82E�03 –
40 1.11E�04 2.80 2.91E�04 2.66 2.99E�04 2.60
80 1.46E�05 2.93 4.81E�05 2.60 4.81E�05 2.64

160 1.93E�06 2.92 7.76E�06 2.63 7.76E�06 2.62
20 4.29E�03 – 4.61E�03 – 4.61E�03 –
40 1.07E�03 2.01 1.10E�03 2.00 1.10E�03 2.06
80 2.66E�04 2.00 2.70E�04 2.03 2.70E�04 2.03

160 6.64E�05 2.00 6.68E�05 2.01 6.68E�05 2.00

.4
ors �e and e for Example 6 when using P2 polynomials on a uniform mesh of N cells (CFL = 0.5)

N T = 1 T = 100 T = 500

L2 error Order L2 error Order L2 error Order

20 7.18E�05 – 8.97E�05 – 1.14E�04 –
40 7.56E�06 3.53 9.58E�06 3.23 9.03E�06 3.66
80 9.19E�07 3.04 8.84E�07 3.44 8.92E�07 3.34

160 7.76E�08 3.57 7.71E�08 3.51 7.84E�08 3.51

20 1.23E�04 – 1.37E�04 – 1.36E�04 –
40 1.48E�05 3.05 1.53E�05 3.16 1.54E�05 3.14
80 1.79E�06 3.05 1.81E�06 3.08 1.81E�06 3.09

160 2.16E�07 3.05 2.16E�07 3.00 2.16E�07 3.07

.5
e 6 when using the Lax-Friedrichs flux and P1 polynomials on a uniform mesh of N cells (T = 1, CFL = 0.5)

�e e

L2 error Order L2 error Order

1.17E�03 – 4.00E�03 –
2.29E�04 2.35 9.84E�04 2.02
5.08E�05 2.17 2.44E�04 2.01
1.22E�05 2.06 6.10E�05 2.00
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5. One-dimensional systems

In this section, we generalize our discussion from scalar equations to one-dimensional hyperbolic systems. We consider
only linear system with constant coefficients.

Example 7. We solve the following one-dimensional system
Table 5
The err

�e

e

u

v

� �
t

þ
0 1
1 0

� �
u

v

� �
x

¼
0
0

� �
uðx;0Þ ¼ sinðxÞ
vðx;0Þ ¼ cosðxÞ
uð0; tÞ ¼ uð2p; tÞ
vð0; tÞ ¼ vð2p; tÞ

8>>>>>>>><>>>>>>>>:
: ð5:1Þ
The exact solution to this system is
u

v

� �
ðx; tÞ ¼ 1

2
sinðx� tÞ þ cosðx� tÞ þ sinðxþ tÞ � cosðxþ tÞ
sinðx� tÞ þ cosðx� tÞ � sinðxþ tÞ þ cosðxþ tÞ

� �
: ð5:2Þ
The DG scheme for this problem is formulated as: find uh; vh 2 Vk
h, such that
R

Ij
ðuhÞtzhdx�

R
Ij

vhðzhÞxdxþ h1ðu�h ;uþh ; v�h ; vþh Þz�h jjþ1
2
� h1ðu�h ;uþh ; v�h ; vþh Þzþh jj�1

2
¼ 0R

Ij
ðvhÞtqhdx�

R
Ij

uhðqhÞxdxþ h2ðu�h ;uþh ; v�h ; v
þ
h Þq�h jjþ1

2
� h2ðu�h ;uþh ; v�h ; v

þ
h Þq

þ
h jj�1

2
¼ 0

(
ð5:3Þ
holds for any zh; qh 2 Vk
h.

In (5.3), the numerical fluxes are taken as the upwind fluxes
h1ðu�h ;uþh ; v�h ; vþh Þ
h2ðu�h ;uþh ; v�h ; vþh Þ

 !
ðx; tÞ ¼ 1

2
v�h þ vþh
u�h þ uþh

 !
�

uþh � u�h
vþh þ v�h

 ! !
: ð5:4Þ
For this problem, the projection Ph of the exact solution is defined as:
Phu

Phv

� �
ðx; tÞ ¼ 1

2
P�h sinðx� tÞ þ P�h cosðx� tÞ þ Pþh sinðxþ tÞ � Pþh cosðxþ tÞ
P�h sinðx� tÞ þ P�h cosðx� tÞ � Pþh sinðxþ tÞ þ Pþh cosðxþ tÞ

 !
: ð5:5Þ
This projection is obtained by diagonalizing the system into
w1

w2

� �
t

þ
1 0
0 �1

� �
w1

w2

� �
x

¼
0
0

� �
; ð5:6Þ
where
w1

w2

� �
¼

1=2 1=2
1=2 �1=2

� �
u

v

� �
: ð5:7Þ
We can apply P�h and Pþh on w1 and w2, and then define
Phu

Phv

� �
¼

1 1
1 �1

� �
P�h w1

Pþh w2

� �
: ð5:8Þ
.1
ors �e and e for Example 7 when using P1 polynomials on a uniform mesh of N cells (CFL = 0.5)

N T = 1 T = 10 T = 100

L2 error Order L2 error Order L2 error Order

20 4.60E�04 – 3.04E�03 – 2.96E�02 –
40 5.80E�05 2.99 3.82E�04 2.99 3.79E�03 2.97
80 7.26E�06 3.00 4.79E�05 3.00 4.75E�04 2.99

160 9.08E�07 3.00 5.99E�06 3.00 5.95E�05 3.00
20 4.21E�03 – 5.16E�03 – 2.99E�02 –
40 1.06E�03 1.99 1.12E�03 2.20 3.93E�03 2.92
80 2.65E�04 2.00 2.69E�04 2.06 5.44E�04 2.85

160 6.64E�05 2.00 6.66E�05 2.02 8.91E�05 2.61



Table 5.2
The errors �e and e for Example 7 when using P2 polynomials on a uniform mesh of N cells (CFL = 0.1)

N T = 1 T = 10 T = 100

L2 error Order L2 error Order L2 error Order

�e 20 4.17E�06 – 5.13E�06 – 3.02E�05 –
40 2.62E�07 3.99 2.78E�07 4.21 9.74E�07 4.95
80 1.64E�08 4.00 1.66E�08 4.06 3.36E�08 4.86

160 1.02E�09 4.00 1.03E�09 4.02 1.37E�09 4.61

e 20 1.07E�04 – 1.07E�04 – 1.11E�04 –
40 1.34E�05 3.00 1.34E�05 3.00 1.34E�05 3.05
80 1.67E�06 3.00 1.67E�06 3.00 1.67E�06 3.00

160 2.09E�07 3.00 2.09E�07 3.00 2.09E�07 3.00
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We use the SSP ninth-order discretization in time and take Dt = CFL h. We run numerical tests with both P1 and P2 poly-
nomials. From Tables 5.1 and 5.2, we observe that �e achieves (k + 2)th order superconvergence, and it grows at most linearly
with respect to time. Meanwhile, the error e is of the expected (k + 1)th order accuracy, and it does not grow much with re-
spect to the time t (for the time that we have considered) for fine grids. That is, the results are similar to those for the scalar
PDEs.

6. Two-dimensional equations

In this section, we generalize our discussion to two-dimensional equations. We will only consider scalar linear equations.

Example 8. We solve the following equation
Table 6
The err

�e

e

ut þ ux þ uy ¼ 0
uðx; y;0Þ ¼ sinðxþ yÞ



: ð6:1Þ
Periodic boundary conditions are imposed on the boundary of the domain [0,2p]2. The exact solution is
uðx; tÞ ¼ sinðxþ y� 2tÞ: ð6:2Þ
We use a rectangular mesh defined as
0 ¼ x1
2
< x3

2
< � � � < xNxþ1

2
¼ 2p; 0 ¼ y1

2
< y3

2
< � � � < yNyþ1

2
¼ 2p ð6:3Þ
and
Ii;j ¼ xi�1
2
; xiþ1

2

h i
� yj�1

2
; yjþ1

2

h i

We define the approximation space as
Vk
h ¼ ft : tjIi;j

2 Q kðIi;jÞ; i ¼ 1; . . . ;Nx; j ¼ 1; . . . ;Nyg ð6:4Þ
where Qk(Ii,j) denotes all the polynomials of degree at most k in x and in y on Ii,j.
The projection Ph is defined as follows:
Z

Ii;j

Phu vhdxdy ¼
Z

Ii;j

uvhdxdy
for any vh 2 Vk�1
h ,
.1
ors �e and e for Example 8 when using V1

h space on a uniform mesh of N � N cells (CFL = 0.5)

N T = 1 T = 10 T = 100

L2 error Order L2 error Order L2 error Order

5 4.68E�02 – 2.81E�01 – 7.01E�01 –
10 6.64E�03 2.82 4.60E�02 2.61 3.46E�01 1.02
20 8.63E�04 2.94 6.04E�03 2.93 5.79E�02 2.58
40 1.09E�04 2.98 7.63E�04 2.99 7.56E�03 2.94

5 8.80E�02 – 2.86E�01 – 7.06E�01 –
10 2.34E�02 1.91 5.06E�02 2.50 3.47E�01 1.03
20 5.97E�03 1.97 8.42E�03 2.59 5.82E�02 2.57
40 1.50E�03 1.99 1.68E�03 2.33 7.70E�03 2.92



Table 6.2
The errors �e and e for Example 8 when using V1

h space on a random mesh of N � N cells (CFL = 0.5)

N T = 1 T = 10 T = 100

L2 error Order L2 error Order L2 error Order

�e 5 4.80E�02 – 2.86E�01 – 7.01E�01 –
10 7.03E�03 2.77 4.73E�02 2.60 3.54E�01 0.99
20 9.47E�04 2.89 6.32E�03 2.91 6.05E�02 2.55
40 1.23E�04 2.94 7.97E�04 2.99 7.89E�03 2.94

e 5 9.32E�02 – 2.92E�01 – 7.06E�01 –
10 2.76E�02 1.76 5.36E�02 2.44 3.54E�01 1.00
20 9.98E�03 1.47 1.17E�02 2.19 6.12E�02 2.53
40 4.17E�03 1.26 4.24E�03 1.47 8.91E�03 2.78
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Z yjþ1=2

yj�1=2

Phuðxiþ1=2; yÞwhðyÞdy ¼
Z yjþ1=2

yj�1=2

uðxiþ1=2; yÞwhðyÞdy
for any wh 2 Pk on [yj�1/2,yj+1/2], and
Z xiþ1=2

xi�1=2

Phuðx; yjþ1=2ÞzhðxÞdx ¼
Z xiþ1=2

xi�1=2

uðx; yjþ1=2ÞzhðxÞdx
for any zh 2 Pk on [xi�1/2,xi+1/2].

We use the upwind fluxes in both spatial directions and SSP Runge–Kutta ninth-order discretization in time to reduce
time errors. We test the example using V1

h space with both uniform and random meshes. The results in Tables 6.1 and 6.2
show that �e achieves third order superconvergence and it grows at most linearly with respect to the time t, just as in the
one-dimensional case.

7. Concluding remarks

We have studied the behavior of the error between the DG solution and the exact solution for smooth solutions of con-
servation laws when upwind fluxes are used. We prove that if we apply piecewise linear polynomials to a linear constant
coefficient scalar equation, the DG solution will be superconvergent towards a particular projection of the exact solution.
The error between the DG solution and the exact solution is thus decomposed into two parts, the superconvergent part
which grows at most linearly in time, and another part which does not grow in time. Therefore, the error of the DG scheme
will not grow for fine grids over a long time period, at least proportional to Oð 1ffiffi

h
p Þ according to the proof for the P1 case and at

least to Oð1hÞ according to the numerical results. We give numerical tests of Pk polynomials, with 1 6 k 6 3, to demonstrate
the superconvergence property for linear equations with variable coefficients, nonlinear equations, systems and two-dimen-
sional equations, to demonstrate the generality of the conclusions. The most important implication of the discussion in this
paper is that the DG solution does not grow with time until the time reaches Oð1hÞ where h is the mesh size, and this further
justifies the advantage of choosing DG methods for long time simulation of linear and nonlinear wave equations.

We remark that we observe high order superconvergence for L1, L2 and L1 measures of the error, even though only error
tables for the L2 norm are provided to save space. A direct conclusion is that the DG solution will be superconvergent at the
outflow boundary point. This has been proved by Adjerid et al. in [1,2].

In our future work we will attempt to prove the superconvergence property for general case of Pk with k P 1. We will also
generalize the results to other types of PDEs, for example the convection diffusion equations.
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